2019
DOI: 10.21776/ub.pengairan.2019.010.02.04
|View full text |Cite
|
Sign up to set email alerts
|

Analisis Prediksi Debit Sungai Amprong Dengan Model Arima (Autoregressive Integrated Moving Average) Sebagai Dasar Penyusunan Pola Tata Tanam

Abstract: Penentuan ketersediaan air yang akurat dalam periode 10 harian dari Sungai Amprong memegang peranan penting dalam tata tanam untuk menunjang proses produksi pertanian pada DI. Kedungkandang, karena apabila ketersediaan air tidak ditentukan dengan tepat maka akan terjadi kesalahan dalam pengaturan air irigasi dan penggunaannya tidak sesuai dengan yang diharapkan. Untuk mengatasi permasalahan tersebut diperlukan sebuah sistem analisis yang mampu melakukan prediksi dengan baik. Salah satu model runtun waktu terse… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(9 citation statements)
references
References 0 publications
0
6
0
3
Order By: Relevance
“…The exponential smoothing models are generated on the basis of the trend and seasonality found in the time-series data. ARIMA models, on the other hand, are mainly generated based on the autocorrelations in the data [20,21]. In this study, an exponential smoothing model and an ARIMA model are built for each station.…”
Section: Analysis Of Forecasting Modelsmentioning
confidence: 99%
See 2 more Smart Citations
“…The exponential smoothing models are generated on the basis of the trend and seasonality found in the time-series data. ARIMA models, on the other hand, are mainly generated based on the autocorrelations in the data [20,21]. In this study, an exponential smoothing model and an ARIMA model are built for each station.…”
Section: Analysis Of Forecasting Modelsmentioning
confidence: 99%
“…There are three components of ARIMA, namely: the autoregressive (AR) components, the moving average models (MA) ones, and the integrated (I) ones. A general expression of an ARIMA model is ARIMA (p, d, q), in which p expresses the autoregressive order, d expresses the integrated order, and q expresses the moving-average order [20,21]. An autoregressive (AR) model of the order p is the one in which the current observation 𝑦 𝑡 is regressed on previous observations, represented in equation( 8)…”
Section: Autoregressive Integrated Moving Average (Arima) Modelsmentioning
confidence: 99%
See 1 more Smart Citation
“…Metode ARIMA pada umumnya memberikan output yang lebih baik dibandingkan dengan metode-metode peramalan yang lainnya dan metode ini didasarkan pada model regresi deret waktu stasioner [7] [8]. Selain itu, metode ini memiliki kelebihan, yaitu memiliki tingkat akurasi yang cukup tinggi dalam melakukan peramalan, mempunyai sifat fleksibel (mengikuti pola data), dan metode ini dapat digunakan untuk memprediksi permintaan di masa yang akan datang dengan cepat, akurat, dan murah [9].…”
Section: Pendahuluanunclassified
“…Depending on the time frame, forecasting can be categorized into three types: short-term (less than 3 months -1 year), medium-term (less than 3 years), and long-term (more than 3 years) [3]. Time series data can be used to forecast using several models, including Exponential Smoothing, Moving Average, and ARIMA [4]. The Exponential Smoothing method is more suitable for forecasting stationary data, while the Moving Average model is more accurate when used for data that does not have seasonal and trend elements.…”
Section: Introductionmentioning
confidence: 99%