2021
DOI: 10.30865/mib.v5i4.3118
|View full text |Cite
|
Sign up to set email alerts
|

Analisis Sentimen E-Wallet di Twitter Menggunakan Support Vector Machine dan Recursive Feature Elimination

Abstract: Grouping of positive or negative sentiments in text reviews is increasingly being done automatically for identification. The selection of features in the classification is a problem that is often not solved. Most of the feature selection related to sentiment classification techniques is insurmountable in terms of evaluating significant features that reduce classification performance. Good feature selection technique can improve sentiment classification performance in machine learning approach. First, two sets … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 13 publications
0
1
0
1
Order By: Relevance
“…S.Sutresno (2023) menemukan bahwa SVM memiliki akurasi yang tinggi dibandingkan Naïve Bayes [11]. Penelitian yang dilakukan oleh Zhou, W., Chen (2020) menggunakan SVM-PSO dalam mengukur studi peringatan dini tentang risiko real estat di Beijing dan menemukan hasil akurasi sebesar 90% [12]. Kemudian penelitian yang dilakukan oleh Liu , W., Guo, dkk (2021) menemukan bahwa SVM-PSO memiliki kinerja yang lebih baik daripada model Adaboost dan ANN dalam menganalisis pola meteorologi untuk peramalan kualitas udara [13].…”
Section: Pendahuluanunclassified
“…S.Sutresno (2023) menemukan bahwa SVM memiliki akurasi yang tinggi dibandingkan Naïve Bayes [11]. Penelitian yang dilakukan oleh Zhou, W., Chen (2020) menggunakan SVM-PSO dalam mengukur studi peringatan dini tentang risiko real estat di Beijing dan menemukan hasil akurasi sebesar 90% [12]. Kemudian penelitian yang dilakukan oleh Liu , W., Guo, dkk (2021) menemukan bahwa SVM-PSO memiliki kinerja yang lebih baik daripada model Adaboost dan ANN dalam menganalisis pola meteorologi untuk peramalan kualitas udara [13].…”
Section: Pendahuluanunclassified
“…Data that has been weighted will begin to be classified with the Support Vector Machine (SVM) algorithm. The concept of this classification method is to find the best hyperplane by taking hyperplane measurements at the margin so that the maximum point is found [15]. The hyperplane is a one-dimensional subspace that smaller than the surrounding space and is used to separate data when there are three dimensions or more [16].…”
Section: Classification With Support Vector Machine (Svm)mentioning
confidence: 99%