2014
DOI: 10.3917/rimhe.010.0105
|View full text |Cite
|
Sign up to set email alerts
|

Analyse comparative des méthodes de classifications

Abstract: Distribution électronique Cairn.info pour ARIMHE. © ARIMHE. Tous droits réservés pour tous pays.La reproduction ou représentation de cet article, notamment par photocopie, n'est autorisée que dans les limites des conditions générales d'utilisation du site ou, le cas échéant, des conditions générales de la licence souscrite par votre établissement. Toute autre reproduction ou représentation, en tout ou partie, sous quelque forme et de quelque manière que ce soit, est interdite sauf accord préalable et écrit de … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(2 citation statements)
references
References 28 publications
0
2
0
Order By: Relevance
“…The most widely used method is clustering, which aimed to group data into clusters. We will focus on two main clustering methods in the context of creating PPI networks ( Malouche, 2013 ; Creusier and Biétry, 2014 ).…”
Section: Methods Based On the Machine Learning Algorithmmentioning
confidence: 99%
“…The most widely used method is clustering, which aimed to group data into clusters. We will focus on two main clustering methods in the context of creating PPI networks ( Malouche, 2013 ; Creusier and Biétry, 2014 ).…”
Section: Methods Based On the Machine Learning Algorithmmentioning
confidence: 99%
“…The first indices to be observed were the information criteria, more specifically the sample-size-adjusted Bayesian Information Criterion (BICssa), which indicates approximate fit indices, where lower values are indicative of superior fit (Nylund-Gibson & Choi, 2018). The adjusted Lo-Mendell-Rubin likelihood ratio test (LMR-LRT) was also used to select the optimal number of profiles, with a non-significant LMR-LRT indicating that a model with one fewer class is preferred (Creusier & Biétry, 2014). In cases where the BICssa and the LMR-LRT statistics did not agree, priority was given to the LMR-LRT.…”
Section: Data Analysesmentioning
confidence: 99%