In recent years, research into and concern over algorithmic fairness and bias in machine learning systems has grown significantly. It is vital to make sure that these systems are fair, impartial, and do not support discrimination or social injustices since machine learning algorithms are becoming more and more prevalent in decision-making processes across a variety of disciplines. This abstract gives a general explanation of the idea of algorithmic fairness, the difficulties posed by bias in machine learning systems, and different solutions to these problems. Algorithmic bias and fairness in machine learning systems are crucial issues in this regard that demand the attention of academics, practitioners, and policymakers. Building fair and unbiased machine learning systems that uphold equality and prevent discrimination requires addressing biases in training data, creating fairness-aware algorithms, encouraging transparency and interpretability, and encouraging diversity and inclusivity.