An effective way to identify breast cancer is by creating a prediction algorithm using risk factors. Models for ML have been used to improve the effectiveness of early detection. This article analyses a KNN combined with singular value decomposition and Grey wolf optimization(GWO) method to give a detection of breast cancer(BC) at the early phase depending on risk metrics. The SVD technique was utilized to eliminate the reliable feature vectors, the GW optimizer was used to select the feature vectors, and while KNN model was used to diagnose the BC status. The proposed hybrid recommendation model (SVOF-KNN) for BC prediction's main objective is to give an accurate recommendation for BC prognosis through four different steps such as;BCCD dataset collection, data pre-processing, feature selection, and classification/recommendation. It is implemented to classify the consequence of risk metrics connected withregular blood analysis(BA) in the BCCD database. The aspects of the BC dataset are insulin, glucose, HOMA, Leptin, resistin, etc. The error categories such as RMSE and MAE are used to calculate the exception values for each instance of the BC dataset. It hybrid model has recommended the best score instance having the minimumexception rateas the defined features for BC prediction. It improves significance in automatic BC classification with the optimum solution. The hybrid recommendation model (SVOF-KNN) also recommends the accurateclassification method for BC diagnosis. The results of this work shall enhance the QoS in BC care.
Nowadays, Tumour is one of the important reasons of human death worldwide, producing about 9.6 million people in 2018. BC (breast cancer) is the common reason for cancer deaths in females. BC is a type of cancer that can be treated when detected early. The main motive of this analysis is to detect cancer early in life using ML (machine learning) techniques. The features of the people included in the WDBC (Wisconsin diagnostic breast cancer) and Coimbra BC datasets were classified by SVOF-KNN, KNN, and Naïve Bayes techniques. The pre-processing data phase was applied to the datasets before classification. After the data pre-processing steps, three classification methods were applied to the data. Specificity and Sensitivity rates were used to calculate the success of the techniques. As an outcome of the BC diagnosis classification, the SVOF-KNN technique was found with a 91 percent specificity rate and 90 percent sensitivity rate. When the outcomes attained from feature extraction and selection are calculated. It is seen that feature extraction, selection, and data pre-processing techniques improve the specificity and sensitivity rate of the detection system.
Data mining can be used to predict the disease for the medical database to authenticate hidden strategies. It normally extracts the useful knowledge domain from medical datasets. Various classifi- cation and feature selection methods are available to predict diseases. This paper examines
on five different diseases which include the BCD, PID, HS and CID databases. It normally considered the existing related work to search out important knowledge domains in this field and explained different methods such as ELM, CNN, SVM, PSOA and KNN used in disease prediction. The main discus-
sion about the classification methods is used to improve the accuracy rate, recall, and precision rate. Data mining methods are very efficient for the job of classification. The current classification methods are used for classifying the diseases (Medical Databases). Various classification
tech- niques have experimented on different databases of the UCI machine learning repository site for managing medical database classification. The simulation result depicts that various methods can attain better performance and compare to the results of other classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.