2012
DOI: 10.5120/4575-6742
|View full text |Cite
|
Sign up to set email alerts
|

Analysis and Classification of Cardiac Arrhythmia Using ECG Signals

Abstract: ECG is a graphical record of the electrical tension of heart and has established as one the most important bio-signal used by cardiologists for diagnostic purposes and further to adopt an appropriate course of treatment. The difficulties faced in interpretation of ECG signals forced researchers to study about automatic detection of cardiac arrhythmia disorders. The data analysis techniques using specific computer software could easily interpret complex ECG signals, predict presence or absence of cardiac arrhyt… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
1

Year Published

2012
2012
2021
2021

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(8 citation statements)
references
References 9 publications
0
7
0
1
Order By: Relevance
“…These val- Table 7 Accuracies, sensitivities and specificities (in 0.1%) for MIT-BIH Arrhythmia Dataset following AAMI recommendations (5 classes). Features ues were reported in the literature in Bhardwaj, Choudhary, and Dayama (2012), in which is analyzed a graph between accuracy and cost keeping gamma constant, and, further, accuracy v/s gamma keeping C constant. When the parametrization of this values is considered in the train phase, the SVM classifier is much slower than the OPF and Bayesian classifiers, as can be seen in Papa et al (2009), Guilherme et al (2011), Papa et al (2013), Santos et al (2012), Ramos et al (2011), for example.…”
Section: Efficiencymentioning
confidence: 99%
“…These val- Table 7 Accuracies, sensitivities and specificities (in 0.1%) for MIT-BIH Arrhythmia Dataset following AAMI recommendations (5 classes). Features ues were reported in the literature in Bhardwaj, Choudhary, and Dayama (2012), in which is analyzed a graph between accuracy and cost keeping gamma constant, and, further, accuracy v/s gamma keeping C constant. When the parametrization of this values is considered in the train phase, the SVM classifier is much slower than the OPF and Bayesian classifiers, as can be seen in Papa et al (2009), Guilherme et al (2011), Papa et al (2013), Santos et al (2012), Ramos et al (2011), for example.…”
Section: Efficiencymentioning
confidence: 99%
“…The classification of arrhythmias is very important as some arrhythmias are severely fatal while others are not. The detection of arrhythmia is an important task in clinical reasons which can initiate life saving operations [4]. Several methods for automated arrhythmia detection have been developed in the past few decades to attempt simplify the monitoring task [5].…”
Section: Related Reasearch Workmentioning
confidence: 99%
“…Mediante la selección de las características en cada nodo, es posible desarrollar un multiclasificador de arritmias asimétrico que presente buenos resultados en comparación con [24][25][26][27][28][29][30][31], con un aumento en la predicción de positivos y disminuyendo el tiempo de ejecución por muestra en comparación con un multiclasificador simétrico. Para el desarrollo de un multiclasificador asimétrico la construcción de la matriz de características es muy importante para mejorar el rendimiento del sistema de clasificación, siendo el método empírico el que mejores resultados presentó, sin embargo, el tiempo que se tarda en determinar la mejor combinación de características es muy superior al tiempo que se tarda usando .…”
Section: Conclusionesunclassified