2010 17th Iranian Conference of Biomedical Engineering (ICBME) 2010
DOI: 10.1109/icbme.2010.5704931
|View full text |Cite
|
Sign up to set email alerts
|

Analysis and classification of EEG signals using spectral analysis and recurrent neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
29
0
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
4
4
2

Relationship

0
10

Authors

Journals

citations
Cited by 53 publications
(30 citation statements)
references
References 6 publications
0
29
0
1
Order By: Relevance
“…Previous studies used RNN for emotional identification [21], classification of motors imagery [23], and neuropsychological identification [24]. While the RNN model achieved an accuracy of 100%, and the MLPNN model reached 98.93% for the identification of epilepsy [25].…”
Section: Recurrent Neural Networkmentioning
confidence: 99%
“…Previous studies used RNN for emotional identification [21], classification of motors imagery [23], and neuropsychological identification [24]. While the RNN model achieved an accuracy of 100%, and the MLPNN model reached 98.93% for the identification of epilepsy [25].…”
Section: Recurrent Neural Networkmentioning
confidence: 99%
“…Penelitian ini melakukan tiga tahapan proses yaitu fitur ekstraksi menggunakan metode Welch, mereduksinya menggunakan nilai statistik dan klasifikasi menggunakan Recurrent Neural Networks. Untuk menguji kinerja dari RNN dalam masalah klasifikasi yang sama maka digunakan multilayerperceptron neural network dengan menggunakan learning backpropagation yang tingkat akurasinya mencapai 100% sekalipun tidak dijelaskan waktu komputasinya [6] [1]. Metode ini dikembangkan dari improved particle swarm optimization yang mengusulkan penambahan bobot inersia untuk menyeimbangkan pencarian global dan local [7;8].…”
Section: Pendahuluanunclassified
“…The relationship between the input and the output determine network behavior [17]. Selection of the neural network inputs is the most important component in designing the neural network for pattern classification [18] EEG brainwave signal pattern of the stroke level in cognitive or thinking abilities had been studied by researchers [19]. RPR techniques were used to investigate the brainwave sub band characteristics for three different group of stroke level [19].…”
Section: Introductionmentioning
confidence: 99%