In this paper, a novel frequency pattern and competent criterion are introduced for short-circuit-fault recognition in permanent-magnet synchronous motors (PMSMs). The frequency pattern is extracted from the monitored stator current analytically and the amplitude of sideband components at these frequencies is introduced as a proper criterion to determine the number of shortcircuited turns. Impacts of the load variation on the proposed criterion are investigated in the faulty PMSM. In order to demonstrate the aptitude of the proposed criterion for precise short-circuit fault detection, the relation between the nominated criterion and the number of short-circuited turns is specified by the mutual information index. Therefore, a white Gaussian noise is added to the simulated stator current and robustness of the criterion is analyzed with respect to the noise variance. The occurrence and the number of short-circuited turns are predicted using support-vector machine as a classifier. The classification results indicate that the introduced criterion can detect the short-circuit fault incisively. Simulation results are verified by the experimental results.Index Terms-Classification, fault diagnosis, feature extraction, mutual information (MI), permanent-magnet synchronous motors (PMSM), short circuit, support-vector machine (SVM).