2014
DOI: 10.3846/2029882x.2014.898366
|View full text |Cite
|
Sign up to set email alerts
|

Analysis and Optimization of Elastic-Plastic Framing Structures Under Complex Constraints / Tamprios Plastinės Rėminės Konstrukcijos Optimizavimas Kompleksinėmis Apribojimų Sąlygomis

Abstract: The paper presents a mathematical model for bar cross-sectional optimization of steel structureunder strength, stiffness and stability constraints. The theory of mathematical programming of extremum energy principles has been used for developing the introduced model. Solving a non-linear mathematical problem is subject to the MatLab programming environment. Because of the existing relationship between elastic response values and the optimized parameters of the structure, the problem has been calculated iterati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2014
2014
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 10 publications
0
2
0
2
Order By: Relevance
“…Tiesinių takumo sąlygų atveju (2), liekamieji poslinkiai r = u Hλ ir liekamosios įrąžos r = S Gλ išreiškiamos per infliuentines liekamųjų poslinkių ir liekamųjų įrąžų matricas H ir G (Gervytė, Jarmolajeva 2013).…”
Section: Patikslintas Konstrukcijos Optimizavimo Uždavinysunclassified
See 1 more Smart Citation
“…Tiesinių takumo sąlygų atveju (2), liekamieji poslinkiai r = u Hλ ir liekamosios įrąžos r = S Gλ išreiškiamos per infliuentines liekamųjų poslinkių ir liekamųjų įrąžų matricas H ir G (Gervytė, Jarmolajeva 2013).…”
Section: Patikslintas Konstrukcijos Optimizavimo Uždavinysunclassified
“…Kai nagrinėjama tik lenkiama konstrukcija, šį energinį principą atitinka toks ekstremumo uždavinio matematinis modelis (Atkočiūnas 2011;Gervytė, Jarmolajeva 2013): …”
Section: Prisitaikomumo Būvio įRąžų Ir Poslinkių Nustatymasunclassified
“…Then, in 1999 15 , Kaliszky and Logo introduced a designing process for an optimised strengthened truss, intending to strengthen the truss with additional elasto-plastic supports and/or bars, guaranteeing that the truss can support the loads without undergoing additional plastic deformations, all while keeping the cost of the strengthened truss to a minimum. The bar-optimised cross-sectional area of a steel structure subject to strength, stiffness, and stability restrictions was also supplied by Gervyte and Jarmolajeva 16 , who developed a mathematical model for this problem. In addition, Movahedi Rad et al 17 recently presented a novel optimisation strategy for regulating the plastic behaviour of haunched reinforced concrete (RC) beams through the utilisation of complementary strain energy of residual forces within the steel rebars to establish the maximum loading or steel minimum volume required for reinforcing beams.…”
Section: Introductionmentioning
confidence: 99%
“…Cellular automata method was applied to optimize the continuum structures (Sanaei, Babaei 2012), reporting interesting results. Analysis and optimization of elastic-plastic framing structures was investi-gated under complex constraints (Gervytė, Jarmolajeva 2013). The impact of ductility levels on the cost of RC moment resisting frames for buildings with 5 to 15 floors was investigated (Babaei 2015b).…”
Section: Introductionmentioning
confidence: 99%