SUMMARYEfficient procedures for evaluating nonlinear distortion and noise valid for any OTA-C filter of arbitrary order are developed based on matrix description of a general OTA-C filter model. Since those procedures use OTA macromodels, they allow us to obtain the results significantly faster than transistor-level simulation. On the other hand, the general OTA-C filter model allows us to apply matrix transforms that manipulate (rescale) filter element values and/or change topology without changing its transfer function. Due to this, the proposed procedures can be used in direct optimization of OTA-C filters with respect to important characteristics such as noise performance, THD, IM3, DR or SNR. As an example, a simple optimization procedure using equivalence transformations is discussed. An application example of the proposed approach to optimal block sequencing and gain distribution of 8th order cascade Butterworth filter is given. Accuracy of the theoretical tools has been verified by comparing to transistor-level simulation results and to experimental results.