In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by using the dipole and quadrupole moments to determine the transformation coefficients. It is more broadly applicable than methods based only on the dipole moment; for example, it is not restricted to electron transfer reactions, and it works with any electronic structure method and for molecules with and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate this method by prototype applications to two cases, LiH and phenol, for which we compare the results to those obtained by the fourfold-way diabatization scheme.