A key component in Hybrid Laminar Flow Control (HLFC) is a turbo-compressor, which requires an inverter. However, a harsh environment in combination with restrictive boundary conditions make the inverter design very challenging. Moreover, aviation certification standards have to be considered. By reason of its growing significance, a Model-Based Systems Engineering (MBSE) approach is described to break the HLFC system requirements down to the lower level of the inverter. Using the acquired set of requirements, the design of an inverter prototype was initiated. For this, the compressor motor, a Permanent Magnet Synchronous Motor (PMSM) running up to 150,000 $$\text {min}^{\text {-1}}$$
min
-1
at a power of more than 5 kW, was characterized by measurements. Thereafter, a control concept was elaborated and implemented on a preliminary electronics. In the end, feasibility tests were conducted on a testbed, whose results match well with the theory.