This work investigates the interaction of the afterbody flow with the propulsive jet flow on a generic space launcher equipped with two alternative nozzle concepts and different afterbody geometries. The flow phenomena are characterized by experimental measurements and numerical URANS and LES simulations. Investigations concern a configuration with a conventional truncated ideal contour nozzle and a configuration with an unconventional dual-bell nozzle. In order to attenuate the dynamic loads on the nozzle fairing, passive flow control devices at the base of the launcher main body are investigated on the configuration with TIC nozzle. The nozzle Reynolds number and the afterbody geometry are varied for the configuration with dual-bell nozzle. The results for integrated nozzles show a shift of the nozzle pressure ratio for transition from sea-level to altitude mode to significant lower levels. The afterbody geometry is varied including a reattaching and non-reattaching outer flow on the nozzle fairing. Investigations are performed at supersonic outer flow conditions with a Mach number of $$Ma_\infty =3$$. It turns out, that a reattachment of the outer flow on the nozzle fairing leads to an unstable nozzle operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.