Nowadays, LED lamps have become a widespread solution in different lighting systems due to their high brightness, efficiency, long lifespan, high reliability and environmental friendliness. The choice of a proper LED driver circuit plays an important role, especially in terms of power quality. In fact, the driver controls its own input current in addition to the LED output current, thus it must guarantee a high power factor. Among the various LED drivers available on the market, the quasi-resonant (QR) flyback topology shows interesting benefits. This paper aims at investigating and analyzing the different issues related to the input current distortion in a QR flyback LED driver. Several effects, such as the distortion caused by the ringing current, crossover distortion due to transformer leakage inductance and crossover distortion due to the input storage capacitor have been experimentally reported. These effects, not previously studied for a high power factor (Hi-PF) QR flyback, have been analyzed in depth. Finally, some practical design guidelines for a Hi-PF QR flyback driver for LED applications are provided.