a b s t r a c tBenzotriazole (BT) is a high-production volume chemical which has been ubiquitously detected in aquatic environments. Although adverse effects from acute and chronic exposure to BT have been reported, the neurotoxic effect of BT and the mechanisms of toxicity are not well documented. In this study, adult female Chinese rare minnow (Gobiocypris rarus) were exposed to 0.05, 0.5, and 5 mg/L BT for 28 days. The brain proteome showed that BT exposure mainly involved in metabolic process, signal transduction, stress response, cytoskeleton, and transport. Pathway analysis revealed that cellular processes affected by BT included cellular respiration, G-protein signal cascades, Ca 2+ -dependent signaling, cell cycle and apoptosis. Moreover, data on relative mRNA levels demonstrated that genes related to these toxic pathways were also significantly affected by BT. Furthermore, proteins affected by BT such as CKBB, GS, HPCA, VDAC1, and FLOT1A are associated with neurological disorders. Therefore, our finding suggested that BT induced molecular responses in the brain and could provide new insight into BT neurotoxicity in Chinese rare minnow.