Synthesis, characterization, and applications of colloidal nanoparticles have been a prominent topic of current research interests within the last two decades. Available reports in the literature that describe the synthesis of colloidal nanoparticles are abundant with various degrees of reproducibility and simplicity. Moreover, different methods for the characterization of colloidal nanoparticles' basic properties are employed, resulting in conflicting results in many cases. Herein, we describe "in detail" selected standard protocols for the synthesis, purification, and characterization of various types of colloidal inorganic nanoparticles including gold nanoparticles, silver nanoparticles, iron oxide nanoparticles, and quantum dots. This report consists of five main parts: The first and the second part are dedicated to describing the synthesis of various types of hydrophobic and hydrophilic nanoparticles in organic solvents and in aqueous solutions, respectively. The third part describes surface modification of nanoparticles with focus on ligand exchange reactions, to allow phase transfer of nanoparticles from aqueous to organic solvents and vice versa. The fourth and the fifth part describe various general purification and characterization techniques used to purify and characterize nanoparticles, respectively. Collectively, this contribution does not aim to cover all available protocols in the literature to prepare inorganic nanoparticles, but rather provides detailed synthetic procedures to important inorganic nanocrystals with full description of their purification and characterization process.
Nano-drugs based on nanoparticles (NP) or on nano-assemblies as carriers of the active pharmaceutical ingredient (API) are often expected to perform better compared to conventional dosage forms. Maximum realization of this potential though requires optimization of multiple physico-chemical, including structural and morphological, parameters. Meaningful distributions of these parameters derived from sufficient populations of individual NPs rather than ensemble distributions are desirable for this task, provided that relevant high-resolution data is available. In this study we demonstrate powerful capabilities of the up-to-date cryogenic transmission electron-microscopy (cryo-TEM) as well as correlations with other techniques abundant in the nano-research milieu. We explored Doxil®-like (an anticancer drug and the first FDA-approved nano-drug) (75–100 nm) PEGylated liposomes encapsulating single doxorubicin-sulfate nano-rod-crystals (PLD). These crystals induce liposome sphere-to-ellipsoid deformation. Doxil® was characterized by a multitude of physicochemical methods. We demonstrate, that accompanied by advanced image-analysis means, cryo-TEM can successfully enable the determination of multiple structural parameters of such complex liposomal nano-drugs with an added value of statistically-sound distributions. The latter could not be achieved by most other physicochemical approaches. It seems that cryo-TEM is capable of quantitative description of individual liposome morphological features, including meaningful distributions of all structural elements, with averages that correlate with other physical methods. Here it is demonstrated that such quantitative cryo-TEM analysis is a powerful tool in determining what is the optimal drug to lipid ratio in PLD, which is found to be the drug to lipid ratio existing in Doxil®.
Skeletal muscle cells are exposed to mechanical stretch during embryogenesis. Increased stretch may contribute to cell death, and the molecular regulation by stretch remains incompletely understood. The aim of this study was to investigate the effects of cyclic stretch on cell death and apoptosis in myoblast using a Flexercell Strain Unit. Apoptosis was studied by annexin V binding and PI staining, DNA size analysis, electron microphotograph, and caspase assays. Fas/FasL expression was determined by Western blot. When myoblasts were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time-dependent manner. We also determined that stretch induced cleavage of caspase-3 and increased caspase-3 activity. Caspase-3 inhibition reduced stretch-induced apoptosis. Protein levels of Fas and FasL remained unchanged. Our findings implicated that stretch-induced cell death is an apoptotic event, and that the activation of caspase cascades is required in stretch-induced cell apoptosis. Furthermore, we had provided evidence that caspase-3 mediated cyclic stretch-induced myoblast apoptosis. Mechanical forces induced activation of caspase-3 via signaling pathways independent of Fas/FasL system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.