We study rare event simulations of semimartingale reflecting Brownian motions (SRBMs) in an orthant. The rare event of interest is that a d-dimensional positive recurrent SRBM enters the set [Formula: see text] before hitting a small neighborhood of the origin [Formula: see text] as [Formula: see text] with a starting point outside the two sets and of order o(n). We show that, under two regularity conditions (the Dupuis–Williams stability condition of the SRBM and the Lipschitz continuity assumption of the associated Skorokhod problem), the probability of the rare event satisfies a large deviation principle. To study the variational problem (VP) for the rare event in two dimensions, we adapt its exact solution from developed by Avram, Dai, and Hasenbein in 2001. In three and higher dimensions, we construct a novel subsolution to the VP under a further assumption that the reflection matrix of the SRBM is a nonsingular [Formula: see text]-matrix. Based on the solution/subsolution, particle-based simulation algorithms are constructed to estimate the probability of the rare event. Our estimator is asymptotically optimal for the discretized problem in two dimensions and has exponentially superior performance over standard Monte Carlo in three and higher dimensions. In addition, we establish that the growth rate of the relative bias term arising from discretization is subexponential in all dimensions. Therefore, we can estimate the probability of interest with subexponential complexity growth in two dimensions. In three and higher dimensions, the computational complexity of our estimators has a strictly smaller exponential growth rate than the standard Monte Carlo estimators.