The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpineÍsubalpine forests are reduced by 50 -75%; and Sierra snowpack is reduced 30 -70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpineÍsubalpine forests are reduced by 75-90%; and snowpack declines 73-90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades. C alifornia, with its diverse range of climate zones, limited water supply, and economic dependence on climatesensitive industries such as agriculture, provides a challenging test case to evaluate impacts of regional-scale climate change under alternative emissions pathways. As characterized by the Intergovernmental Panel on Climate Change, demographic, socioeconomic, and technological assumptions underlying longterm emissions scenarios vary widely (1). Previous studies have not systematically examined the difference between projected regional-scale changes in climate and associated impacts across scenarios. Nevertheless, such information is essential to evaluate the potential for and costs of adaptation associated with alternative emissions futures and to inform mitigation policies (2).Here, we examine a range of potential climate futures that represent uncertainties in both the physical sensitivity of current climate models and divergent greenhouse gas emissions pathways. Two global climate models, the low-sensitivity National Center for Atmospheric ResearchÍDepartment of Energy Parallel Climate Model (PCM) (3) and the medium-sensitivity U.K. Met Office Hadley Centre Climate Model, version 3 (HadCM3), model (4, 5) are used to calculate climate change resulting from the SRES (Sp...