Using deep learning methods has led to significant improvement in speaker recognition systems. Introducing xvectors as a speaker modeling method has made these systems more robust. Since, in challenging environments with noise and reverberation, the performance of x-vectors systems degrades significantly, the demand for denoising techniques remains as before. In this paper, for the first time, we try to denoise the xvectors speaker embedding. Our focus is on additive noise. Firstly, we use the i-MAP method which considers that both noise and clean x-vectors have a Gaussian distribution. Then, leveraging denoising autoencoders (DAE) we try to reconstruct the clean x-vector from the corrupted version. After that, we propose two hybrid systems composed of statistical i-MAP and DAE. Finally, we propose a novel DAE architecture, named Deep Stacked DAE, composed of several DAEs where each DAE receives as input the output of its predecessor DAE concatenated with the difference between noisy x-vectors and its predecessor's output. The experiments on Fabiol corpus show that the results given by the hybrid DAE i-MAP method in several cases outperforms the conventional DAE and i-MAP methods. Also, the results for Deep Stacked DAE in most cases is better than the other proposed methods. For utterances longer than 12 seconds we achieved a 51% improvement in terms of EER with Deep Stacked DAE, and for utterances shorter than 2 seconds, Deep Stacked DAE gives 18% improvements compared to the baseline system.