To program in distributed computing environments such as grids and clouds, workflow is adopted as an attractive paradigm for its powerful ability in expressing a wide range of applications, including scientific computing, multi-tier Web, and big data processing applications. With the development of cloud technology and extensive deployment of cloud platform, the problem of workflow scheduling in cloud becomes an important research topic. The challenges of the problem lie in: NP-hard nature of task-resource mapping; diverse QoS requirements; on-demand resource provisioning; performance fluctuation and failure handling; hybrid resource scheduling; data storage and transmission optimization. Consequently, a number of studies, focusing on different aspects, emerged in the literature. In this paper, we firstly conduct taxonomy and comparative review on workflow scheduling algorithms. Then, we make a comprehensive survey of workflow scheduling in cloud environment in a problem-solution manner. Based on the analysis, we also highlight some research directions for future investigation.