With the aim of solving the errors of gear transmission system in the actual manufacturing process, processing and installation, and solving the the vibration and noise of the gear system caused by the deformation brought about by external excitation such as motor load and actuator, which seriously threaten the safety and stability of unit equipment, a novel active vibration suppression structure of multistage gear system with built-in piezoelectric actuator is designed to generate active control force, and it can be used on the shaft. An active controller is designed and established using FxLMS adaptive algorithm. The results of this method show that by measuring the vibration signal system, the base frequency of the high-speed gear pair is 310 Hz, and the basic frequency of the low-speed gear pair is 192 Hz. I had the adaptation snare go for almost 0.5 seconds, with a difference of 0.52%. Adaptive Trap II reached in 1 second, with a difference of 0.96%. In the active vibration suppression test, the basic frequency of the high-speed gear pair is 804 Hz, and the basic frequency of the low-speed gear connector is 500 Hz. Using the FxLMS adaptive algorithm, it is able to effectively suppress the frequency vibrations of the high-speed dual-gear and low-speed dual-gear coupling systems of multispeed gears. After being controlled by FxLMS algorithm at the second frequency of the high-speed gear, the vibration reduction is about 10 dB at the third frequency of the low-speed gear. The vibration reduction is also approximately 7 dB. This has proved that a new experiment of industrial safety can be used to accelerate the movement of gear vibrations using the FxLMS adaptation algorithm.