1993
DOI: 10.1021/ac00051a013
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of first-order rate constant spectra with regularized least-squares and expectation maximization. 1. Theory and numerical characterization

Abstract: Analysis of parallel, first-order rate processes by deconvolution of single-exponential kernels from experimental data Is performed with regularized least squares and the method of expectation maximization (EM). These methods may be used In general for the unbiased numerical analysis of linear Fredholm Integrals of the first kind with optimal results. Regularized least squares Is performed using a smoothing regularlzor with an adaptive choice for the regularization parameter (CONTIN) and by ridge regression us… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
57
0

Year Published

1996
1996
2021
2021

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 63 publications
(57 citation statements)
references
References 16 publications
0
57
0
Order By: Relevance
“…The other analytical method, proposed by Guiochon and co-workers [1,10,[52][53][54][55][56], is called the expectation maximation (EM) method and has been mainly used in the characterization of MIPs developed for enantiomers separations [10][11][12][13]16,50]. The method is very simple as in this case the energy affinity distribution is obtained exclusively from the adsorption isotherm experimental values, without any previous assumption on the binding model.…”
Section: Expectation Maximization (Em) Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…The other analytical method, proposed by Guiochon and co-workers [1,10,[52][53][54][55][56], is called the expectation maximation (EM) method and has been mainly used in the characterization of MIPs developed for enantiomers separations [10][11][12][13]16,50]. The method is very simple as in this case the energy affinity distribution is obtained exclusively from the adsorption isotherm experimental values, without any previous assumption on the binding model.…”
Section: Expectation Maximization (Em) Methodsmentioning
confidence: 99%
“…These models make use of either analytically simple approximations previously employed in solving similar algebraic problems in other fields [48] or the well known numerical approaches for solving integral equations. The affinity distribution analysis using the simple approximations were explored by the group of Shimizu which developed the affinity spectrum (AS) approach to characterize the MIP's distribution of binding sites [33,34,38,40,49] while the groups of Guiochon, Spivak and Stanley [50][51][52][53][54][55][56][57][58] have proposed the expectation maximization (EM) model making use of numerical approaches. Both models are known formerly under the name affinity distribution (AD) or affinity energy distribution (AED) methods as they provide a mathematical picture of the surface binding site distribution.…”
Section: Affinity Distribution Analysismentioning
confidence: 99%
“…We will see that calculation of the AED is an important step in the adsorption isotherm model discrimination process. The AED could be solved by many different methods [38,39].…”
Section: Aedmentioning
confidence: 99%
“…In the last few years, different numeri-THEORY cal techniques have been applied on such problems like the Equilibrium ion exchange of Cd 2/ at montmorillonite (8) or the dissociation of Cu 2/ from humic acids (9). Additionally these algoAt minerals with a heterogeneous surface, many different rithms have been analyzed theoretically (10). If kinetic types of binding sites Z i exist which may bind metal ions.…”
Section: Introductionmentioning
confidence: 99%
“…[10], which is the difference between the molarity of Cd 2/ in equilibrium at time t and with the total molarity of …”
Section: Introductionmentioning
confidence: 99%