Direct analysis of methamphetamine, amphetamine, and p-hydroxymethamphetamine in urine was achieved by cation-selective exhaustive injection and sweeping micellar EKC. A bare fused-silica capillary (40 cm, 50 microm id) was filled with phosphate buffer (80 mM, pH 3, containing 20% ACN). Then a high-conductivity buffer (100 mM phosphate, pH 3; 6.9 kPa for 2.5 min) was injected. Samples were loaded using electrokinetic injection (10 kV, 600 s) which created long zones of cationic analytes. To enhance sensitivity by sweeping, the stacking step was performed using a phosphate buffer (50 mM, pH 3, containing 20% ACN and 100 mM SDS) at -20 kV before separation by MEKC. This method was capable of detecting the analytes at ppb levels. The calibration plots were linear (r(2) >or= 0.9948) over a range of 100-5000 ng/mL for methamphetamine, and 100-2000 ng/mL for amphetamine and p-hydroxymethamphetamine. The LODs (S/N = 3) were 20 ng/mL for methamphetamine, and 15 ng/mL for amphetamine and p-hydroxymethamphetamine. The method was applied to analysis of 14 urine samples of addicts and is suitable for screening suspected samples for forensic purposes. The results showed good agreement with fluorescence polarization immunoassay and GC-MS.