Chemometric techniques usually employed in purity assessment and resolution of multicomponent peaks have been applied to analytical data from complex biological samples obtained with CE-DAD. In the assessment of the purity of the electrophoretic peaks, the orthogonal projection approach, the orthogonal projection approach with Durbin-Watson criterion, and the simple-to-use interactive self-modeling mixture analysis method have been employed. Multivariate curve resolution with alternating least squares has been successfully implemented to resolve co-migrating peaks of metabolites in CE-DAD and to recover qualitative and quantitative information about co-migrating components of urine extract. The main challenge consisted of developing high-quality multivariate curve resolution with alternating least squares models of multicomponent peaks acquired during the CE analysis of nucleoside patterns in 18 urine samples. The recovered ultraviolet visible (UV-Vis) spectra have been employed to identify additional nucleosides, such as 1-methylinosine, 2-methylguanosine, and 1-methylguanosine, whose presence in the metabolic profile produced by the applied CE-DAD method has not yet been recognized. Concentration profiles of these compounds can be used in metabonomic studies.