Partial Least Squares-Discriminant Analysis (PLS-DA) is a PLS regression method with a special binary ‘dummy’ y-variable and it is commonly used for classification purposes and biomarker selection in metabolomics studies. Several statistical approaches are currently in use to validate outcomes of PLS-DA analyses e.g. double cross validation procedures or permutation testing. However, there is a great inconsistency in the optimization and the assessment of performance of PLS-DA models due to many different diagnostic statistics currently employed in metabolomics data analyses. In this paper, properties of four diagnostic statistics of PLS-DA, namely the number of misclassifications (NMC), the Area Under the Receiver Operating Characteristic (AUROC), Q2 and Discriminant Q2 (DQ2) are discussed. All four diagnostic statistics are used in the optimization and the performance assessment of PLS-DA models of three different-size metabolomics data sets obtained with two different types of analytical platforms and with different levels of known differences between two groups: control and case groups. Statistical significance of obtained PLS-DA models was evaluated with permutation testing. PLS-DA models obtained with NMC and AUROC are more powerful in detecting very small differences between groups than models obtained with Q2 and Discriminant Q2 (DQ2). Reproducibility of obtained PLS-DA models outcomes, models complexity and permutation test distributions are also investigated to explain this phenomenon. DQ2 and Q2 (in contrary to NMC and AUROC) prefer PLS-DA models with lower complexity and require higher number of permutation tests and submodels to accurately estimate statistical significance of the model performance. NMC and AUROC seem more efficient and more reliable diagnostic statistics and should be recommended in two group discrimination metabolomic studies.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-011-0330-3) contains supplementary material, which is available to authorized users.
The selection of optimal preprocessing is among the main bottlenecks in chemometric data analysis. Preprocessing currently is a burden, since a multitude of different preprocessing methods is available for, e.g., baseline correction, smoothing, and alignment, but it is not clear beforehand which method(s) should be used for which data set. The process of preprocessing selection is often limited to trial-and-error and is therefore considered somewhat subjective. In this paper, we present a novel, simple, and effective approach for preprocessing selection. The defining feature of this approach is a design of experiments. On the basis of the design, model performance of a few well-chosen preprocessing methods, and combinations thereof (called strategies) is evaluated. Interpretation of the main effects and interactions subsequently enables the selection of an optimal preprocessing strategy. The presented approach is applied to eight different spectroscopic data sets, covering both calibration and classification challenges. We show that the approach is able to select a preprocessing strategy which improves model performance by at least 50% compared to the raw data; in most cases, it leads to a strategy very close to the true optimum. Our approach makes preprocessing selection fast, insightful, and objective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.