ABSTRACT. We continue our study of the extensions of generalized probability measures. First, we describe some extensions of generalized random events (represented by classes of functions with values in [0,1]) to which generalized probability measures can be extended. Second, we study products of domains of probability and describe states on such products. Third, we show that the events in IF-probability, introduced by B. Riečan, form a suitable category isomorphic to a subcategory of the category of fuzzy random events. Consequently, IF-probability can be interpreted within fuzzy probability theory. We put forward some problems related to the extensions of probability domains and hint some applications.