2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) 2019
DOI: 10.1109/icoei.2019.8862696
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of Image Segmentation Algorithms for the Effective Detection of Leukemic Cells

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 14 publications
(5 citation statements)
references
References 11 publications
0
4
0
Order By: Relevance
“…Setelah memperoleh 150 dataset citra tanah pasir berdasarkan pemotretan langsung dilokasi penelitian, selanjutnya citra tersebut diolah menggunakan metode Otsu Thresholding. Analisis metode Otsu Thresholding merupakan metode umum untuk menghasilkan hasil yang baik, sehingga dapat digunakan untuk menentukan tahapan segmentasi butiran tanah pasir [21], hal ini juga mengacu kepada penelitian Bhagya T, dkk [22]. Hasil analisis algoritma otsu thresholding, kemudian diimplementasikan kedalam bahasa pemrograman matlab.…”
Section: A Dataunclassified
“…Setelah memperoleh 150 dataset citra tanah pasir berdasarkan pemotretan langsung dilokasi penelitian, selanjutnya citra tersebut diolah menggunakan metode Otsu Thresholding. Analisis metode Otsu Thresholding merupakan metode umum untuk menghasilkan hasil yang baik, sehingga dapat digunakan untuk menentukan tahapan segmentasi butiran tanah pasir [21], hal ini juga mengacu kepada penelitian Bhagya T, dkk [22]. Hasil analisis algoritma otsu thresholding, kemudian diimplementasikan kedalam bahasa pemrograman matlab.…”
Section: A Dataunclassified
“…The analysis of the two methods is the Watershed Transform method and the Otsu Thresholding method to determine the stages of segmentation with reference to the research of (Li, Zhang, et al, 2019) and (Bhagya et al, 2019). Following are the steps for implementing the watershed transform and otsu thresholding methods.…”
Section: Figure 2 Flow Chart Of Research Stepsmentioning
confidence: 99%
“…1) Coarse Segmentation: Fluorescent staining can eliminate the interference of surrounding non-cell impurities, marking the cell area as a green fluorescent signal, and the rest background is marked as black (as shown in the second row of Figure 1). Therefore, in the coarse segmentation stage, the fluorescence-stained image is subjected to the maximum inter-class variance method (OTSU algorithm) [15], [16] to determine the maximum variance between the cell area and the background in the cell image. As a threshold value, the binarization operation is performed on each pixel in the image.…”
Section: B Cmfmentioning
confidence: 99%