By
coupling supercritical fluid chromatography (SFC) and nuclear
magnetic resonance (NMR) in-line, a powerful analytical method arises
that enables chemically specific analysis of a broad range of complex
mixtures. However, during chromatography, the compounds are diluted
in the mobile phase, in this case supercritical CO2 (scCO2), often resulting in concentrations that are too low to be
detected by NMR spectroscopy or at least requiring excessive signal
averaging. We present a hyphenated SFC-NMR setup with an integrated
approach for concentrating samples in-line, which are diluted in scCO2 during chromatography. This in-line concentration is achieved
by controlled in-line expansion of the scCO2. As a proof
of concept four isomers of vitamin E (tocopherol) were isolated by
SFC, concentrated in-line by expanding CO2 from 120 to
50 bar, and finally shuttled to the NMR spectrometer fitted with a
dedicated probehead for spectroscopic characterization of microfluidic
samples. The abundant isomers were readily detected, supporting the
viability of SFC-NMR as a powerful analytical tool.