Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The use of composite materials in several sectors, such as aeronautics and automotive, has been gaining distinction in recent years. However, due to their high costs, as well as unique characteristics, consequences of their heterogeneity, they present challenging gaps to be studied. As a result, the finite element method has been used as a way to analyze composite materials subjected to the most distinctive situations. Therefore, this work aims to approach the modeling of composite materials, focusing on material properties, failure criteria, types of elements and main application sectors. From the modeling point of view, different levels of modeling—micro, meso and macro, are presented. Regarding properties, different mechanical characteristics, theories and constitutive relationships involved to model these materials are presented. The text also discusses the types of elements most commonly used to simulate composites, which are solids, peel, plate and cohesive, as well as the various failure criteria developed and used for the simulation of these materials. In addition, the present article lists the main industrial sectors in which composite material simulation is used, and their gains from it, including aeronautics, aerospace, automotive, naval, energy, civil, sports, manufacturing and even electronics.
The use of composite materials in several sectors, such as aeronautics and automotive, has been gaining distinction in recent years. However, due to their high costs, as well as unique characteristics, consequences of their heterogeneity, they present challenging gaps to be studied. As a result, the finite element method has been used as a way to analyze composite materials subjected to the most distinctive situations. Therefore, this work aims to approach the modeling of composite materials, focusing on material properties, failure criteria, types of elements and main application sectors. From the modeling point of view, different levels of modeling—micro, meso and macro, are presented. Regarding properties, different mechanical characteristics, theories and constitutive relationships involved to model these materials are presented. The text also discusses the types of elements most commonly used to simulate composites, which are solids, peel, plate and cohesive, as well as the various failure criteria developed and used for the simulation of these materials. In addition, the present article lists the main industrial sectors in which composite material simulation is used, and their gains from it, including aeronautics, aerospace, automotive, naval, energy, civil, sports, manufacturing and even electronics.
<div class="section abstract"><div class="htmlview paragraph">The use of parts with notches or some geometric discontinuity is common in the industrial field. In the aerospace industry, it is common to use components made of composite materials with holes for fixing components. Thus, understanding the behavior of these materials, especially when they present holes or geometries that act as stress concentrators, becomes crucial to assess the possible reduction in strength due to presence of these notches. This study aims to determine the stress concentration factor in circular-hole composite laminates made of PPS (Polyphenylene Sulfide) with 5 HS carbon fiber. For determining stress concentration factor, analytical methods using the point stress criterion, computational numerical simulation through FEA (finite element analysis), and experimental validation of proposed model were used. Mechanical tests of specimens with dimensions adapted from ASTM D3039 standard were performed, which were instrumented using strain gauges in the transverse and longitudinal positions near the hole. The acquisition of specific strains was carried out through the Quantum X-HBM, which served to validate the computational simulation model. The modeling and analysis of stresses and strains were done using Ansys Workbench software. The proposed model was made using the PLANE183 element, which supports multilayer materials. Paths were also created in the locations where the strain gauges were mounted to validate the strain values obtained in the tests and thus validate the model. After validation of reference model, with a ratio between hole diameter and width of specimen (D/W) equal to 0.4, models were made by varying the D/W ratio from 0.1 to 0.5. The values SCF obtained from the numerical simulations were close to those obtained analytically, with this difference being approximately 3%. The SCF decreases as the D/W ratio increases, varying from 4.6 to 3.3 using the data from simulations and from 4.6 to 3.4 by analytical method.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.