There is no doubt that energy is one of the most important requirements of life, and its importance increases with the passage of time, and this is what make countries to harness the capabilities and scientists in developing energy systems of all kinds, one of the most important energy systems these days is what is known as vertical axis wind turbines. If we compare this type of system with horizontal axis wind turbines, it is characterized by a relatively lower manufacturing cost. But on the other hand, it suffers from less efficiency in addition to the problem of starting the self-movement. The idea of this research revolves around the use of an engineering design for the vertical axis wind rotor that is very rarely used in the field of wind energy. This design takes the geometric shape of two inverted trapezoids. Within the framework of this study, the term "slant straight-blade vertical axis wind turbine" (SS-VAWT) was assigned to the wind rotor. Amendments have been made to the mathematical model of Multi stream tube to make it suitable for application and work on (SS-VAWT), where, it is known that the multi-stream tube model uses primarily and only for the original Darrieus and the H-Darrieus rotors. In order to prove the efficacy of the software used, the results obtained from it were compared with the practical results of previous studies, as it proved its effectiveness in obtaining the satisfactory results that were intended for this analysis. The analyzes and investigations that were conducted on the improved SS design included changing the geometry by changing some of its dimensional parameters represented in rotor height, rotor diameter, number of rotor blades, rotor blade section length, rotor blade section type and rotor blades inclination angle on the horizontal plane. Within the scope of the case studies that were worked on in this research, the results showed that the best efficiency of the SS rotor was achieved in the range of height to radius ratio (0.66 to 1), cord line length to radius ratio about 0.12 The angle of inclination of the blades is between 45-and 65-degrees Degree. In these ranges, the value of Max power factors has reached its turn, and the energetic range of the rotor has increased as a function of the peripheral relative velocity, in addition to a relatively large solution to the problem of starting self-movement, which appears through the highest-power factor values to move away from the limits of negative values in the range Terminal forgetfulness from 1 to 3. In addition, the effect of changing Raynaud's number on the turbine aerodynamic performance has been investigated. The results showed that the higher the Reynolds value, the higher the power factor value, the higher the energy range and the lessening the problem of starting the self-movement.