The neutron induced irradiation field is a key problem in fusion reactor related to nuclear responses, shielding design, nuclear safety, and thermo-hydraulic analysis. To support the system design of China Fusion Engineering Test Reactor (CFETR), the comprehensive analysis of irradiation field has been conducted in support of many new developed advanced tools. The paper first summarizes the recent progress on related neutronics code development effort including the geometry conversion tool cosVMPT, Monte Carlo variance reduction technology ‘on-the-fly’ global variance reduction (GVR). Such developed tools have been fully validated and applied on the CFETR nuclear analysis. The neutron irradiation has been evaluated on CFETR Water Cooled Ceramic Breeder (WCCB) blanket, divertor, vacuum vessel, superconductive coils and four kinds of heating systems including the Electron Cyclotron Resonance Heating (ECRH), Ion Cyclotron Resonance Heating (ICRH), Low Hybrid Wave (LHW) and Neutral Beam Injection (NBI). The nuclear responses of tritium breeding ratio (TBR), heating, irradiation damage, Hydrogen/Helium (H/He) production rate of material have been analyzed. In case of neutron damage and overheating deposition on the superconductive coils and Vacuum Vessel (VV), the interface and shielding design among heating systems, blanket and other systems has been initialized. The results show the shielding design can meet the requirement of coil and VV after several iterated neutronics calculation.