The 2019 novel SARS-like coronavirus (SARS-CoV-2) entry depends on the host membrane serine protease TMPRSS2, which can be blocked by some clinically-proven drugs. Here we analyzed spatial relevance between glycosylation sequons and antibody epitopes and found that, different from SARS-CoV S, most high-surface-accessible epitopes of SARS-CoV-2 S are blocked by the glycosylation, and the optimal epitope with the highest surface accessibility is covered by the S1 cap. TMPRSS2 inhibitor treatments may prevent unmasking of this epitope and therefore prolong virus clearance and may induce antibody-dependent enhancement. Interestingly, a heparin-binding sequence immediately upstream of the S1/S2 cleavage site has been found in SARS-CoV-2 S but not in SARS-CoV S. Binding of SARS-CoV-2 with heparins may lead to exposure of S686, which then facilitates the S1/S2 cleavage, induces exposure of the optimal epitope, and therefore increases the antibody titres. A combination of heparin and vaccine (or convalescent serum) treatments thus is recommended.