124
INTRODUCTIONDevelopments in machine tools tend towards high speed technology, including high-speed machining (HSM) and high-speed cutting (HSC), especially in high speed end milling applications [1] and [2]. High speed technology applications in machine tools are characterised by a high feeding speed, low axial and radial cutting depth, increased metal removal rate, simplified processing, and reduced costs. The thermal effect of workpieces is insignificant since cutting chips remove most of the heat induced by processing, and hence cutting oil is seldom used. This trend contributes to environmental protection efforts. Only a small amount of cutting fluid is available to lubricate green cutting. The primary deformation zone is significantly heated and bears the cutting force. Therefore, major green cutting methods include tool materials, coating technology, tool geometry design, chip control, coefficient of tool-face friction with the workpiece, and selection of cutting. Green cuttingrelated developments and applications depend on technological advances in machinery and cutting tools.The grinding precision of cutting tools is determined by the surface roughness of the rake face and relief face, in which precision essentially affects the surface roughness of a workpiece and the tool life during high-speed milling. Generally, a cutting tool manufacturer evaluates the quality of grinding, first, with respect to the surface finish of end-mill, and then with by the geometrical profile. The surface finish, which influences the abrasion of the endmill, lubrication, accuracy, and tool life expectancy, depends on the surface roughness of the rake face and relief face.As the most important and the final procedure in manufacturing, grinding of cutting edges is also critical in determining geometrical shapes, cutting performance, wear on the cutting edge, and tool life [3]. Shaji and Radhakrishnan [4] analysed the grinding parameters with respect to surface characteristics, e.g., wheel, workpiece, processing, and mechanical parameters. Yin et al. [5] examined ultraprecision grinding of cemented carbides from a microstructure perspective. Kwak [6] diagnosed errors in surface grinding processing by Taguchi and response surface methods. Nguyen et al. [7] simulated impact parameters of the precision grinding process.Owing to its efficiency and systematic approach, the Taguchi method has been extensively adopted in parameter design and experimental planning [8]. Despite its application in optimizing process parameters [9] to [13], the Taguchi method is unsatisfactory for handling multiple performance characteristics. In this study we attempt to derive an efficient solution to overcome the above problem.Grey relational analysis based on the Taguchi method can be adopted to elucidate the complex relationship among the designated performance