The complex structure of turning aggravates obtaining the desired results in terms of tool wear and surface roughness. The existence of high temperature and pressure make difficult to reach and observe the cutting area. In-direct tool condition, monitoring systems provide tracking the condition of cutting tool via several released or converted energy types, namely, heat, acoustic emission, vibration, cutting forces and motor current. Tool wear inevitably progresses during metal cutting and has a relationship with these energy types. Indirect tool condition monitoring systems use sensors situated around the cutting area to state the wear condition of the cutting tool without intervention to cutting zone. In this study, sensors mostly used in indirect tool condition monitoring systems and their correlations between tool wear are reviewed to summarize the literature survey in this field for the last two decades. The reviews about tool condition monitoring systems in turning are very limited, and relationship between measured variables such as tool wear and vibration require a detailed analysis. In this work, the main aim is to discuss the effect of sensorial data on tool wear by considering previous published papers. As a computer aided electronic and mechanical support system, tool condition monitoring paves the way for machining industry and the future and development of Industry 4.0.
The manufacturing of parts from nickel-based superalloy, such as Inconel-800 alloy, represents a challenging task for industrial sites. Their performances can be enhanced by using a smart cutting fluid approach considered a sustainable alternative. Further, to innovate the cooling strategy, the researchers proposed an improved strategy based on the minimum quantity lubrication (MQL). It has an advantage over flood cooling because it allows better control of its parameters (i.e., compressed air, cutting fluid). In this study, the machinability of superalloy Inconel-800 has been investigated by performing different turning tests under MQL conditions, where no previous data are available. To reduce the numerous numbers of tests, a target objective was applied. This was used in combination with the response surface methodology (RSM) while assuming the cutting force input (F c), potential of tool wear (VB max), surface roughness (Ra), and the length of tool-chip contact (L) as responses. Thereafter, the analysis of variance (ANOVA) strategy was embedded to detect the significance of the proposed model and to understand the influence of each process parameter. To optimize other input parameters (i.e., cutting speed of machining, feed rate, and the side cutting edge angle (cutting tool angle)), two advanced optimization algorithms were introduced (i.e., particle swarm optimization (PSO) along with the teaching learning-based optimization (TLBO) approach). Both algorithms proved to be highly effective for predicting the machining responses, with the PSO being concluded as the best amongst the two. Also, a comparison amongst the cooling methods was made, and MQL was found to be a better cooling technique when compared to the dry and the flood cooling.
In this paper, the selected results of measurements and analysis of the active surfaces of a new generation of coated abrasive tools obtained by the use of focus-variation microscopy (FVM) are presented and discussed. The origin of this technique, as well as its general metrological characteristics is briefly described. Additionally, information regarding the focus variation microscope used in the experiments -InfiniteFocus ® IF G4 produced by Alicona Imaging, is also given. The measurements were carried out on microfinishing films (IMFF), abrasive portable belts with Cubitron™ II grains, and single-layer abrasive discs with Trizact™ grains. The obtained results were processed and analyzed employing TalyMap 4.0 software in the form of maps and profiles, surface microtopographies, AbbottFirestone curves, and calculated values of selected areal parameters. This allowed us to describe the active surfaces of the coated abrasive tools, as well as to assess the possibility of applying the FVM technique in such kinds of measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.