This work aims to show the characterisation of Cr-V-N coatings, with the varied amounts of Cr and V. CrN, VN and Cr-V-N coatings were deposited onto silicon and XC100 steel substrates by reactive radio frequency magnetron sputtering and characterised with X-ray diffraction, X-ray photoelectron spectroscopies, energy dispersive X-ray spectroscopy, scanning electron microscopy, nanoindentation, pin on disc tribological tests and scratch tests. The residual stress was calculated using the Stoney formula. Compared to the CrN system, the Cr-V-N films presented a rough surface based on pyramidal morphology. A hardness of 19?53 GPa and a friction coefficient of 0?55 were obtained for CrN; in contrast, Cr-V-N coatings presented a weak hardness of 6?23 GPa. In the case of wear against a 100Cr6 ball, the Cr-V-N films were completely removed from the substrate, even though the Cr-V-N coating presented a low friction coefficient (0?39). However, the VN film showed good tribological performance.