Purpose
The purpose of this paper is to identify salient topic categories and outline their evolution patterns and temporal trends in microblogs on a public health emergency across different stages. Comparisons were also examined to reveal the similarities and differences between those patterns and trends on microblog platforms of different languages and from different nations.
Design/methodology/approach
A total of 459,266 microblog entries about the Ebola outbreak in West Africa in 2014 on Twitter and Weibo were collected for nine months after the inception of the outbreak. Topics were detected by the latent Dirichlet allocation model and classified into several categories. The daily tweets were analyzed with the self-organizing map technique and labeled with the most salient topics. The investigated time span was divided into three stages, and the most salient topic categories were identified for each stage.
Findings
In total, 14 salient topic categories were identified in microblogs about the Ebola outbreak and were summarized as increasing, decreasing, fluctuating or ephemeral types. The topical evolution patterns of microblogs and temporal trends for topic categories vary on different microblog platforms. Twitter users were keen on the dynamics of the Ebola outbreak, such as status description, secondary events and so forth, while Weibo users focused on background knowledge of Ebola and precautions.
Originality/value
This study revealed evolution patterns and temporal trends of microblog topics on a public health emergency. The findings can help administrators of public health emergencies and microblog communities work together to better satisfy information needs and physical demands by the public when public health emergencies are in progress.