Algal blooms data are collected and refined as experimental data for algal blooms prediction. Refined algal blooms dataset is analyzed by logistic regression analysis, and statistical tests and regularization are performed to find the marine environmental factors affecting algal blooms. The predicted value of algal bloom is obtained through logistic regression analysis using marine environment factors affecting algal blooms. The actual values and the predicted values of algal blooms dataset are applied to the confusion matrix. By improving the decision boundary of the existing logistic regression, and accuracy, sensitivity and precision for algal blooms prediction are improved. In this paper, the algal blooms prediction model is established by the ensemble method using logistic regression and confusion matrix. Algal blooms prediction is improved, and this is verified through big data analysis.
Twitter can spread and share all kinds of information such as facts, opinions, and ideas in real time. In this paper, we empirically compare and analyze the topic categories in Twitter with all top 100 users in each of geographic region. We mainly consider the relationships among regions and selected four regions: Global, Seoul, Tokyo, and Beijing. Each of the top 100 users in Twitter is classified into a specific category and then statistical analysis is conducted. Among eight topic categories, the "Arts" category is the largest and the second is "Life". The correlation between global and Seoul groups has the lowest value among the six pairs of relationships between regional groups, and this difference is statistically significant. We find that the Seoul, Tokyo, and Beijing regional Twitter groups, all in East Asia, have high topical similarity. Based on the correlation analysis, Seoul and Tokyo saliently show a sticky trend. The correlation coefficient presents very a strong positive correlation between Seoul and Tokyo. The correlation between the global group and the East Asian groups is relatively lower than that among the East Asian groups.
Twitter is a popular microblogging service that enables the users to send and read short text messages. These messages are becoming source to analyze topic trends and identify relations among temporal topics. In this paper, we propose a method to classify the temporal topics on Twitter as a problem of grouping the similar patterns. To provide a starting point for a classification under the same topics, we identify the content word weighting scheme based on Latent Dirichlet Allocation (LDA). And we formulate how the temporal topics in the time window can be classified like peaky topics, constant topics, and periodic topics. We provide different real case studies which show the validity of the proposed method. Evaluations show that the proposed method is useful as a classifying model in the analysis of the temporal topics
Massive numbers of users of social networks share various types of information such as opinions, news, and ideas in real time. As a new form of social network, Twitter is a particularly useful information source. Studying influence can help us better understand the role of social networks. The popularity of social networks like Twitter is primarily measured by the number of followers. The number of followers in Twitter and the number of users exposed to news media are important factors in measuring influence. We chose Twitter and the New York Times as representative media to analyze the influence and present an empirical analysis of these datasets. When the correlation between the number of followers in Twitter and the number of users exposed to the New York Times is computed, the result is moderately high. The correlation between the number of users exposed to the New York Times and the number of sections including the users on it, was found to be very high. We measure the normalized influence score using our proposed expression based on the two correlation coefficients.
Filipino language is an Austronesian language based on numerous native languages with influences from other major languages such as English and Spanish. The Filipino alphabet is consists of 26 English alphabets, with the addition of two letters, "ñ" and "ng", a total of 28 letters. Filipino language expressions and sentences are still incomparable to English and Spanish even though there are numerous borrowed words from these languages. This study aims to discover the uniqueness in the Filipino language by identifying the frequencies of the letters in common words used and be able to introduce a revolutionary keypad for the Filipinos which is scientifically efficient. To compare the efficiency of the revised and the original keypad, computations using Fitts' Law, Hick-Hyman Law and KSPC were done. Results showed that the new keypad layout was more effective than the original keypad. Introducing a improvised keypad to the Filipinos is one step closer in achieving customized services and features to Filipinos in mobile computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.