In a previous study, we identified and purified a 99-amino-acid rat liver-kidney perchloric-acid-soluble 23-kDa protein (P23) which displays 30% identity with a highly conserved domain of heat shock proteins (HSPs), as well as an AT-rich 3' untranslated region, which has also been described to play a role in H70 mRNA life span and protein expression. An identical perchloric-acid-soluble protein inhibiting protein synthesis in a rabbit reticulocyte lysate system was also found 2 years later by another group. More recently, the novel, the YjgF, protein family has been described, comprising, 24 full-length homologues, including P23, highly conserved through evolution, and consisting of approximately 130 residues each and sharing a common ternary structure. Independent studies from different laboratories have provided various hypothetical functions for each of these proteins. The high degree of evolutionary conservation may suggest that these proteins play an important role in cellular regulation. Although the function of none of these proteins is known precisely, we present experimental evidence which, combined with the relationship to glucose-regulating protein revealed here, and the relationship to fatty-acid-binding protein revealed by others, allow us to propose a role for P23. In rat liver, P23 expression is developmentally regulated and modulated by dietary glucose, and its mRNA is induced by starvation, in the presence of fatty-acids and in 3-MeDAB-induced hepatomas. The mRNA encoding mouse liver P23 is also hormonally modulated in a mouse line AT1F8. These data indicate that P23 protein might be a key controller of intermediary metabolism during fasting.