Human UDP-glucuronosyltransferase (UGT) is a part of a major excretion pathway for endobiotics and xenobiotics. The UGT family of genes is highly polymorphic, and our aim is to describe novel polymorphisms at the UGT1A3 locus and determine how they alter substrate metabolism and drug reactions. One hundred healthy Japanese adults volunteered for the present study. We sequenced PCR-amplified fragments of the gene directly, and calculated the frequency of the genetic variations detected. To measure variant enzyme activity, we constructed five expression models and used estrone as the substrate in the assays. We identified six novel single nucleotide polymorphisms (SNPs). Of these, four caused amino acid substitutions (17A fi G: Q6R, 31T fi C: W11R, 133C fi T: R45W, and 140T fi C: V47A) and the remaining two were silent (81G fi A: E27E and 447A fi G: A159A). We found five types of alleles having differing SNP combinations: wild type (frequency=0.61), W11R-E27E-A159A (0.10), Q6A-W11R-E27E-A159A (0.055), W11R-E27E-V47A-A159A (0.125), and R45W (0.11). Expression studies found that the variants changed the enzyme efficiencies (K m /V max ) to 121% of the wild type for W11R, 86% for Q6R-W11R, 369% for W11R-V47A, and 70% for R45W. Several UGT 1A3 polymorphisms exist in the Japanese population, having different levels of activity. These polymorphisms are capable of affecting the steady state levels of estrogens, and may increase sensitivity to adverse drug effects.