In this study, PsMYB2 was successfully cloned by using cDNA from Potentilla sericea as a template, with which we constructed the plant overexpression vector pBI121-PsMYB2-GFP and then the vector was transferred into Arabidopsis thaliana wild-type plants. We studied the gene function using real-time quantitative PCR and performed a preliminary characterization and analysis of the function of PsMYB2 under abiotic stresses. This study observed that under cadmium stress, the gene expression of PsMYB2 gene in roots, stems and leaves was up to 3-6 times higher than the control. The germination rate of transgenic Arabidopsis thaliana T3 generation seeds reached more than 95%. The O2·-, H2O2 and MDA contents of the transgenic Potentilla sericea plant lines were increased but lower than those of the wild-type strain. The SOD, POD, and CAT activities were increased in both wild-type and transgenic strains, and the transgenic strains showed higher enzyme activities than the wild-type. We concluded that PsMYB2 could improve plant resistance to cadmium, which provides a theoretical basis for using transgenic plants to remediate cadmium-contaminated soil and for sustainable land use.