Wind energy generation plays a vital role in transitioning from fossil fuel-based energy sources and in alleviating the impacts of global warming. However, global wind energy coverage still needs to rise, while requiring a significant step up in conversion efficiency: monitoring wind flow and operational parameters of wind turbines is an essential prerequisite for coverage and conversion efficiency optimization. This paper presents a low-power, self-sustainable, and timesynchronised system for aerodynamic and acoustic measurements on operating wind turbines. It includes 40 high-accuracy barometers, 10 microphones, 5 differential pressure sensors, and implements a coarse time synchronisation on top of a Bluetooth Low Energy 5.1 protocol tuned for long-range communications. Moreover, we field-assessed the node capability to collect precise and accurate aerodynamic data with a multi-node setup. Outdoor experimental tests revealed that the system can acquire heterogeneous data with a time synchronisation error below 100 µs and sustain a data rate of 600 kbps over 400 m with up to 5 sensor nodes, enough to fully instrument a wind turbine. The proposed method does not add any traffic overhead on the Bluetooth Low Energy 5.1 protocol, fully relying only on connection events and withstands transmission discontinuity often present in long range wireless communications.