This paper presents a germanium-around-source gate-all-around tunnelling field-effect transistor (GAS GAA TFET). The electrical characteristics of the device were studied and compared with those of silicon gate-all-around and germanium-based-source gate-all-around tunnel field-effect transistors. Furthermore, the electrical characteristics were optimised using Synopsys Sentaurus technology computer-aided design (TCAD). The GAS GAA TFET contains a combination of around-source germanium and silicon, which have different bandgaps. With an increase in the gate-source voltage, band-to-band tunnelling (BTBT) in silicon rapidly approached saturation since germanium has a higher BTBT probability than silicon. At this moment, germanium could still supply current increment, resulting in a steady and steep average subthreshold swing ( S S AVG ) and a higher ON-state current. The GAS GAA TFET was optimised through work function and drain overlapping engineering. The optimised GAS GAA TFET exhibited a high ON-state current ( I ON ) (11.9 μ A), a low OFF-state current ( I OFF ) ( 2.85 × 10 − 9 μ A), and a low and steady S S AVG (57.29 mV/decade), with the OFF-state current increasing by 10 7 times. The GAS GAA TFET has high potential for use in low-power applications.