This paper discusses the design and implementation of a robotic gripper that uses compressed air to (a) orient the parts in the desired grasping position, (b) guide the parts inside a grasping mechanism and (c) feed the parts to a track conveyor with sufficient accuracy. The novelty of the approach lays in the ability to perform in-hand manipulation of the object by the gripper allowing to pick randomly placed objects that have a complex geometry. Unlike existing 'pick and place' operations which are mainly focused on flat objects that require minimal manipulation (rotation around vertical axis), the gripper can re-orient the parts itself, minimizing the robot's motion. The major components of the gripper are 3D printed, allowing fast customization for different products. The manipulation and gripping mechanisms have been inspired by an application in the consumer goods industry involving the feeding of shaver handles to an assembly machine. The findings indicate that the proposed solution can be an alternative to part-dedicated, high-cost feeding equipment that is currently used.