2016
DOI: 10.1299/mej.16-00300
|View full text |Cite
|
Sign up to set email alerts
|

Analytic examination of mechanism for compressive residual stress introduction with low plastic strain using peening

Abstract: Our goal for this study was to understand the cause of the differences in surface properties between surfaces processed using water jet peening (WJP) and shot peening (SP) and to examine the compressive residual stress introduction process with low plastic strain using SP. The dynamic behaviors of stress and strain in surfaces during these processes were analyzed through elasto-plastic calculations using a finite-element method program, and the calculated results were compared with measured results obtained th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2020
2020

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…For conventional WJP processing, while macro distortion is introduced, micro strain for each crystal grain introduced by machining or heat treatment can be reduced. In recent progress of WJP technology, the pressure applied to the specimen surface has increased due to microjet deformed part of bubbles and control of the shock wave caused by bubble growth again within a short time [6]. High compressive residual stress is applied to a specimen surface to improve fatigue characteristics; however, the increase in the pressure applied to the specimen surface is likely to produce micro strain in the form of dislocations and lattice defects in the internal structures, similar to that with shot peening in exchange for high compressive residual stress, which could then cause hydrogen embrittlement or delayed fracture.…”
Section: Resultsmentioning
confidence: 99%
“…For conventional WJP processing, while macro distortion is introduced, micro strain for each crystal grain introduced by machining or heat treatment can be reduced. In recent progress of WJP technology, the pressure applied to the specimen surface has increased due to microjet deformed part of bubbles and control of the shock wave caused by bubble growth again within a short time [6]. High compressive residual stress is applied to a specimen surface to improve fatigue characteristics; however, the increase in the pressure applied to the specimen surface is likely to produce micro strain in the form of dislocations and lattice defects in the internal structures, similar to that with shot peening in exchange for high compressive residual stress, which could then cause hydrogen embrittlement or delayed fracture.…”
Section: Resultsmentioning
confidence: 99%