Water-jet peening (WJP) has been applied to several Japanese nuclear power plants as a method of preventive maintenance against stress corrosion cracking. WJP introduces compressive residual stress reaching hundreds of micrometers in depth, comparable with shot peening (SP), and much smaller plastic deformation at the processed surfaces than SP does. The causes of these features are investigated from the perspective of the impact processes on the surfaces. Pulse-load propagation simulation through elasto-plastic calculations using a finite-element method program was applied to analyze the effects of various parameters of the impact processes on the depth profiles of the residual stress and the amount of plastic deformation on the surface of austenitic stainless steels processed with either WJP or the SP. The calculated depth profiles of residual stress and plastic deformation were similar in some degree to the experimental results of an XRD residual-stress analysis and a plastic-strain analysis using both cross-sectional hardness measurements and EBSD analysis. The analysis reveals that the depth of the compressive residual stress tends to increase as the size of the loaded spot during impact increases. The average and maximum observed load spots using WJP were 0.25 and 0.95 mm in diameter, respectively. These diameters were respectively 1.3 and 4.8 times as large as the calculated diameter of a load spot using SP. The reason that the depth of the compressive residual stress using WJP is comparable with that using SP is considered to be the fact that the sizes of the load spots during the impact with WJP are in the same range as those with SP. Shots impact the surface during the SP process, while shock waves generated by the extinction of cavitations impact the surface during the WJP process. The analysis reveals that the shots deform the surface locally with much higher surface pressure in the early stages of the impact, while shock waves deform the surface evenly throughout the wave passage across the surface. It is inferred from these analyzed results that the media impacting the surface make a difference in the hardness and microstructure of the processed surface.
Our goal for this study was to understand the cause of the differences in surface properties between surfaces processed using water jet peening (WJP) and shot peening (SP) and to examine the compressive residual stress introduction process with low plastic strain using SP. The dynamic behaviors of stress and strain in surfaces during these processes were analyzed through elasto-plastic calculations using a finite-element method program, and the calculated results were compared with measured results obtained through experiments. Media impacting a surface results in a difference in the hardness and microstructure of the processed surface. During SP, a shot deforms the surface locally with stress concentration in the early stages of the impact, while shock waves deform the surface evenly throughout the wave passage across the surface during WJP. A shot with a larger diameter creates a larger impact area on the surface during shot impact. Thus, SP with a large-diameter shot suppresses the stress concentration under the same kinetic energy condition. As the shot diameter increases, the equivalent plastic strain decreases. On the other hand, the shot is subject to size restriction since the calculated results indicate the compressive residual stress at the surface decreased and occasionally became almost zero as the shot diameter increased. Thus, compressive residual stress introduction with low plastic strain by using SP is considered achievable by using shots with a large diameter and choosing the appropriate peening conditions.
We have developed a new method for predicting the distribution of compressive residual stress on and under the weld surface after Water Jet Peeing (WJP). WJP is a practical technology for the preventive maintenance of nuclear power plants. The welds of internal structures of nuclear reactors are subjected to tensile residual stress without any surface treatment. WJP utilizes a cavitating jet to mitigate the generation of Stress Corrosion Cracking (SCC) by changing the residual stress from tensile to compressive. The prediction and confirmation tests of the compressive residual stress are therefore important. We predicted the residual stress improvement by WJP using a combination of a cavitating jet simulation and a residual stress simulation. Impulsive bubble pressure that varied in microseconds in the cavitating jet was numerically simulated with 'bubble flow model'. The distribution of the impulsive bubble pressure was verified with a measurement of bubble collapse location by using multi Acoustic Emission (AE) sensors. The cavitation intensity was estimated by the bubble pressure. The residual stress simulation was conducted on the basis of the input condition obtained from the cavitation intensity. The residual stress distributions on and under the material surface were predicted. The distributions were compared with measured data, and the results confirmed the developed method for predicting the compressive residual stress after WJP was valid.
We have developed a practical peening technology using cavitating water jet. Water jet peening (WJP) is a preventive maintenance technology for nuclear power plants. WJP changes the residual stress on weld surfaces of reactor internals from tensile to compressive to mitigate the stress corrosion cracking (SCC). The operating conditions of WJP are controlled on the basis of ‘JSME Codes for Nuclear Power Generation Facilities.’ WJP has several advantages of operation, especially no foreign material is left in the reactor vessel since only water is injected, and wide range of the residual stress improvement is obtained since the cavitating flow spreads along the weld surface. We have also developed a prediction method of the residual stress improvement by WJP using a combination of a cavitating jet simulation and a residual stress simulation. We numerically simulated impulsive bubble pressure that varied in microseconds in the cavitating jet with ‘bubble flow model’. The bubble collapse energy was estimated by the bubble pressure. The residual stress simulation was conducted under the input conditions obtained from the bubble collapse energy. The residual stress distributions on and under the weld surface were predicted. The distributions were compared with measured data, and the result confirmed that the developed method for predicting the compressive residual stress after WJP was valid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.