2009
DOI: 10.1103/physrevb.79.195109
|View full text |Cite
|
Sign up to set email alerts
|

Analytic model of elastic metamaterials with local resonances

Abstract: A unified analytic model for effective mass density, effective bulk modulus, and effective shear modulus is presented for elastic metamaterials composed of coated spheres embedded in a host matrix. The effective material properties are derived directly from the averages of local momentum, stress, and strain defined in a single doubly coated sphere. It is shown that the effective material parameters predicted by the proposed model are in excellent agreements with the coherent-potential approximation results at … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
95
0
4

Year Published

2012
2012
2021
2021

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 169 publications
(100 citation statements)
references
References 41 publications
1
95
0
4
Order By: Relevance
“…For isotropic EMMs, the three relevant effective properties are bulk modulus, shear modulus and mass density, the negative effective elastic parameters can be realized by promoting monopolar, dipolar and quadrupolar resonances with resonant microstructures into the building blocks of an EMM 27 , with the ultimate goal of attaining a negative index of refraction 28,29 . In these cases, the EMM can function as a left-handed medium, that is, S .…”
mentioning
confidence: 99%
“…For isotropic EMMs, the three relevant effective properties are bulk modulus, shear modulus and mass density, the negative effective elastic parameters can be realized by promoting monopolar, dipolar and quadrupolar resonances with resonant microstructures into the building blocks of an EMM 27 , with the ultimate goal of attaining a negative index of refraction 28,29 . In these cases, the EMM can function as a left-handed medium, that is, S .…”
mentioning
confidence: 99%
“…According to the stress-strain relations from Hooke's law, the stress expression can be obtained from equation (2). The in-plane stress tensor is expressed in equation (4): 22…”
Section: Model and Computation Theorymentioning
confidence: 99%
“…The unique characteristic of band gap in periodic structures or phononic crystals has attracted great attention, [1][2][3][4][5] because it provides a new solution for reducing vibration and noise in machinery, aerospace, architecture, transportation and other fields. Since the locally resonant phononic crystal (in short PC) was proposed in 1993, the band gap frequencies had reduced at least one or two orders of magnitude lower than that produced by the Bragg scattering mechanism.…”
Section: Introductionmentioning
confidence: 99%
“…Nos sistemas "solído-base", as inclusões esféricas podem ser fixadas na matriz hospedeira facilitando assim sua implementação no laboratório. A ressonância dipolar pode ser interpretada como uma oscilação fora de fase da esfera compósita em relação a um campo de força direcional, em que o núcleo de ouro fornece a massa pesada e a borracha D fornece a mola [17,48,49]. A seguir analisaremos um novo sistema "sólido-base" que exiba dupla ressonância numa faixa de frequências ampla.…”
Section: Inclusão Esférica Revestidaunclassified
“…Para entender o significado físico da aparição das duas regiões de frequência onde e  tornou-se negativo, nos explicamos a segui: A banda na região de baixa frequência acontece devido à oscilação fora de fase onde o núcleo da esfera do compósito atua como a massa pesada e a casca esférica de borracha M atua como a mola do sistema oscilante, na segunda banda, o núcleo permanece fixo e a casca esférica de borracha sofre um deslocamento na direção contraria ao movimento total da esfera do compósito [17,48,49].…”
Section: Parâmetros Elásticos Efetivosunclassified