2016
DOI: 10.18255/1818-1015-2016-3-334-341
|View full text |Cite
|
Sign up to set email alerts
|

Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes

Abstract: Abstract. The main objective of the paper is to present a new analytic-numerical approach to singularly perturbed reaction-diffusion-advection models with solutions containing moving interior layers (fronts). We describe some methods to generate the dynamic adapted meshes for an efficient numerical solution of such problems. It is based on a priori information about the moving front properties provided by the asymptotic analysis. In particular, for the mesh construction we take into account a priori asymptotic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 11 publications
0
1
0
2
Order By: Relevance
“…An analytical study of the solution is an effective means of overcoming these difficulties. The asymptotic methods used in this work, in particular Vasil'eva's algorithm [10] and the asymptotic method of differential inequalities [31,32], allow us to determine, up to a small parameter, the position of the transition layer and the equation of its motion [27][28][29], and to substantiate the existence of a solution of the considered type and thereby confirm the reliability of numerical calculations.…”
Section: Introductionmentioning
confidence: 72%
“…An analytical study of the solution is an effective means of overcoming these difficulties. The asymptotic methods used in this work, in particular Vasil'eva's algorithm [10] and the asymptotic method of differential inequalities [31,32], allow us to determine, up to a small parameter, the position of the transition layer and the equation of its motion [27][28][29], and to substantiate the existence of a solution of the considered type and thereby confirm the reliability of numerical calculations.…”
Section: Introductionmentioning
confidence: 72%
“…Результат может быть использован для создания численного алгоритма, основанного на применении асимптотического анализа с целью построения пространственно-неоднородных сеток при описании внутреннего слоя контрастной структуры [8,9]. Рис.…”
Section: примерunclassified
“…Численное решение таких задач встречает определенные сложности, связанные с выбором сеток и начальных условий. Для решения этих проблем наиболее успешным является использование аналитических методов [10][11][12][13]. Асимптотический анализ с использованием алгоритма Васильевой [14], проведенный в настоящей работе, позволяет определить условия существования решения вида фронта, а также получить асимптотическое приближение решения, которое можно выбрать в качестве начального условия для численного алгоритма.…”
Section: Introductionunclassified