“…Now set φ t (ξ) := E[Z t ]. By the martingale property of the Itô and the jump integrals, combined with Fubini's theorem, we obtain that φ t (ξ) = 1 + t 0 φ s (ξ)ψ s (ξ)ds, whereψ s (ξ) = R d e i ξ,Φ −1 0,s y − 1 − 1 {|y|<1} i ξ, Φ −1 0,s y ν(dy) + i ξ, Φ −1 0,s β s − 1 2 ξ, Φ −1 0,s σ Φ −1 0,s σ ξ .By differentiating both terms, we have thatd dt φ t (ξ) = φ t (ξ)ψ t (ξ), t > 0, φ 0 (ξ) = 1, which yields that E exp i ξ,X t − Y = φ t (ξ) = e t 0 ψs(ξ)ds ,which in turn, combined with (63), yields(8) and concludes the proof.…”