In this article, we will trace the historical development of tumor growth laws, which in a quantitative fashion describe the increase in tumor mass/volume over time. These models are usually formulated in terms of differential equations that relate the growth rate of the tumor to its current state and range from the simple one-parameter exponential growth model to more advanced models that contain a large number of parameters. Understanding the assumptions and consequences of such models is important, as they often underpin more complex models of tumor growth. The conclusion of this brief survey is that although much improvement has occurred over the last century, more effort and new models are required if we are to understand the intricacies of tumor growth. Cancer Res; 73(8); 2407-11. Ó2013 AACR.
We propose a cellular automaton model of solid tumour growth, in which each cell is equipped with a micro-environment response network. This network is modelled using a feed-forward artificial neural network, that takes environmental variables as an input and from these determines the cellular behaviour as the output. The response of the network is determined by connection weights and thresholds in the network, which are subject to mutations when the cells divide. As both available space and nutrients are limited resources for the tumour this gives rise to clonal evolution where only the fittest cells survive. Using this approach we have investigated the impact of the tissue oxygen concentration on the growth and evolutionary dynamics of the tumour. The results show that the oxygen concentration affects the selection pressure, cell population diversity and morphology of the tumour. A low oxygen concentration in the tissue gives rise to a tumour with a fingered morphology that contains aggressive phenotypes with a small apoptotic potential, while a high oxygen concentration in the tissue gives rise to a tumour with a round morphology containing less evolved phenotypes. The tissue oxygen concentration thus affects the tumour at both the morphological level and on the phenotype level.
We present a cellular automaton model of clonal evolution in cancer aimed at investigating the emergence of the glycolytic phenotype. In the model each cell is equipped with a micro-environment response network that determines the behaviour or phenotype of the cell based on the local environment. The response network is modelled using a feed-forward neural network, which is subject to mutations when the cells divide. This implies that cells might react differently to the environment and when space and nutrients are limited only the fittest cells will survive. With this model we have investigated the impact of the environment on the growth dynamics of the tumour. In particular we have analysed the influence of the tissue oxygen concentration and extra-cellular matrix density on the dynamics of the model. We found that the environment influences both the growth and evolutionary dynamics of the tumour. For low oxygen concentration we observe tumours with a fingered morphology, while increasing the matrix density gives rise to more compact tumours with wider fingers. The distribution of phenotypes in the tumour is also affected, and we observe that the glycolytic phenotype is most likely to emerge in a poorly oxygenated tissue with a high matrix density. Our results suggest that it is the combined effect of the oxygen concentration and matrix density that creates an environment where the glycolytic phenotype has a growth advantage and consequently is most likely to appear.
The brain tumour glioblastoma is characterised by diffuse and infiltrative growth into surrounding brain tissue. At the macroscopic level, the progression speed of a glioblastoma tumour is determined by two key factors: the cell proliferation rate and the cell migration speed. At the microscopic level, however, proliferation and migration appear to be mutually exclusive phenotypes, as indicated by recent in vivo imaging data. Here, we develop a mathematical model to analyse how the phenotypic switching between proliferative and migratory states of individual cells affects the macroscopic growth of the tumour. For this, we propose an individual-based stochastic model in which glioblastoma cells are either in a proliferative state, where they are stationary and divide, or in motile state in which they are subject to random motion. From the model we derive a continuum approximation in the form of two coupled reaction-diffusion equations, which exhibit travelling wave solutions whose speed of invasion depends on the model parameters. We propose a simple analytical method to predict progression rate from the cell-specific parameters and demonstrate that optimal glioblastoma growth depends on a non-trivial trade-off between the phenotypic switching rates. By linking cellular properties to an in vivo outcome, the model should be applicable to designing relevant cell screens for glioblastoma and cytometry-based patient prognostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.