In this paper we present two types of mathematical model which describe the invasion of host tissue by tumour cells. In the models, we focus on three key variables implicated in the invasion process, namely, tumour cells, host tissue (extracellular matrix) and matrix-degradative enzymes associated with the tumour cells. The first model focusses on the macro-scale structure (cell population level) and considers the tumour as a single mass. The mathematical model consists of a system of partial differential equations describing the production and/or activation of degradative enzymes by the tumour cells, the degradation of the matrix and the migratory response of the tumour cells. Numerical simulations are presented in one and two space dimensions and compared qualitatively with experimental and clinical observations. The second type of model focusses on the micro-scale (individual cell) level and uses a discrete technique developed in previous models of angiogenesis. This technique enables one to model migration and invasion at the level of individual cells and hence it is possible to examine the implications of metastatic spread. Finally, the results of the models are compared with actual clinical observations and the implications of the model for improved surgical treatment of patients are considered.
Neoplasms change over time through a process of cell-level evolution, driven by genetic and epigenetic alterations. However, the ecology of the microenvironment of a neoplastic cell determines which changes provide adaptive benefits. There is widespread recognition of the importance of these evolutionary and ecological processes in cancer, but to date, no system has been proposed for drawing clinically relevant distinctions between how different tumours are evolving. On the basis of a consensus conference of experts in the fields of cancer evolution and cancer ecology, we propose a framework for classifying tumours that is based on four relevant components. These are the diversity of neoplastic cells (intratumoural heterogeneity) and changes over time in that diversity, which make up an evolutionary index (Evo-index), as well as the hazards to neoplastic cell survival and the resources available to neoplastic cells, which make up an ecological index (Eco-index). We review evidence demonstrating the importance of each of these factors and describe multiple methods that can be used to measure them. Development of this classification system holds promise for enabling clinicians to personalize optimal interventions based on the evolvability of the patient’s tumour. The Evo- and Eco-indices provide a common lexicon for communicating about how neoplasms change in response to interventions, with potential implications for clinical trials, personalized medicine and basic cancer research.
Cancer research attracts broad resources and scientists from many disciplines, and has produced some impressive advances in the treatment and understanding of this disease. However, a comprehensive mechanistic view of the cancer process remains elusive. To achieve this it seems clear that one must assemble a physically integrated team of interdisciplinary scientists that includes mathematicians, to develop mathematical models of tumorigenesis as a complex process. Examining these models and validating their findings by experimental and clinical observations seems to be one way to reconcile molecular reductionist with quantitative holistic approaches and produce an integrative mathematical oncology view of cancer progression.
Treatment of advanced cancers has benefited from new agents that supplement or bypass conventional therapies. However, even effective therapies fail as cancer cells deploy a wide range of resistance strategies. We propose that evolutionary dynamics ultimately determine survival and proliferation of resistant cells. Therefore, evolutionary strategies should be used with conventional therapies to delay or prevent resistance. Using an agent-based framework to model spatial competition among sensitive and resistant populations, we applied antiproliferative drug treatments to varying ratios of sensitive and resistant cells. We compared a continuous maximum-tolerated dose schedule with an adaptive schedule aimed at tumor control via competition between sensitive and resistant cells. Continuous treatment cured mostly sensitive tumors, but with any resistant cells, recurrence was inevitable. We identified two adaptive strategies that control heterogeneous tumors: dose modulation controls most tumors with less drug, while a more vacation-oriented schedule can control more invasive tumors. These findings offer potential modifications to treatment regimens that may improve outcomes and reduce resistance and recurrence. By using drug dose modulation or treatment vacations, adaptive therapy strategies control the emergence of tumor drug resistance by spatially suppressing less fit resistant populations in favor of treatment sensitive ones. .
We propose a cellular automaton model of solid tumour growth, in which each cell is equipped with a micro-environment response network. This network is modelled using a feed-forward artificial neural network, that takes environmental variables as an input and from these determines the cellular behaviour as the output. The response of the network is determined by connection weights and thresholds in the network, which are subject to mutations when the cells divide. As both available space and nutrients are limited resources for the tumour this gives rise to clonal evolution where only the fittest cells survive. Using this approach we have investigated the impact of the tissue oxygen concentration on the growth and evolutionary dynamics of the tumour. The results show that the oxygen concentration affects the selection pressure, cell population diversity and morphology of the tumour. A low oxygen concentration in the tissue gives rise to a tumour with a fingered morphology that contains aggressive phenotypes with a small apoptotic potential, while a high oxygen concentration in the tissue gives rise to a tumour with a round morphology containing less evolved phenotypes. The tissue oxygen concentration thus affects the tumour at both the morphological level and on the phenotype level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.